
jsonschema Documentation
Release 2.6.0

Julian Berman

February 05, 2017

Contents

1 Schema Validation 3
1.1 The Basics . 3
1.2 The Validator Interface . 3
1.3 Versioned Validators . 6
1.4 Validating Formats . 6

2 Handling Validation Errors 9
2.1 ErrorTrees . 11
2.2 best_match and relevance . 13

3 Resolving JSON References 15

4 Creating or Extending Validator Classes 17
4.1 Creating Validation Errors . 18

5 Frequently Asked Questions 19
5.1 Why doesn’t my schema that has a default property actually set the default on my instance? 19
5.2 How do jsonschema version numbers work? . 20

6 Indices and tables 23

Python Module Index 25

i

ii

jsonschema Documentation, Release 2.6.0

jsonschema is an implementation of JSON Schema for Python (supporting 2.7+ including Python 3).

>>> from jsonschema import validate

>>> # A sample schema, like what we'd get from json.load()
>>> schema = {
... "type" : "object",
... "properties" : {
... "price" : {"type" : "number"},
... "name" : {"type" : "string"},
... },
... }

>>> # If no exception is raised by validate(), the instance is valid.
>>> validate({"name" : "Eggs", "price" : 34.99}, schema)

>>> validate(
... {"name" : "Eggs", "price" : "Invalid"}, schema
...)
Traceback (most recent call last):

...
ValidationError: 'Invalid' is not of type 'number'

You can find further information (installation instructions, mailing list) as well as the source code and issue tracker on
our GitHub page.

Contents:

Contents 1

http://json-schema.org
https://github.com/Julian/jsonschema/

jsonschema Documentation, Release 2.6.0

2 Contents

CHAPTER 1

Schema Validation

1.1 The Basics

The simplest way to validate an instance under a given schema is to use the validate() function.

jsonschema.validate(instance, schema, cls=None, *args, **kwargs)
Validate an instance under the given schema.

>>> validate([2, 3, 4], {"maxItems": 2})
Traceback (most recent call last):

...
ValidationError: [2, 3, 4] is too long

validate() will first verify that the provided schema is itself valid, since not doing so can lead to less
obvious error messages and fail in less obvious or consistent ways. If you know you have a valid schema
already or don’t care, you might prefer using the validate() method directly on a specific validator (e.g.
Draft4Validator.validate()).

Parameters

• instance – The instance to validate

• schema – The schema to validate with

• cls (IValidator) – The class that will be used to validate the instance.

If the cls argument is not provided, two things will happen in accordance with the specification. First, if the
schema has a $schema property containing a known meta-schema 1 then the proper validator will be used. The
specification recommends that all schemas contain $schema properties for this reason. If no $schema property
is found, the default validator class is Draft4Validator.

Any other provided positional and keyword arguments will be passed on when instantiating the cls.

Raises

• ValidationError if the instance is invalid

• SchemaError if the schema itself is invalid

1.2 The Validator Interface

jsonschema defines an (informal) interface that all validator classes should adhere to.
1 known by a validator registered with validates()

3

http://json-schema.org/latest/json-schema-core.html#anchor22
http://json-schema.org/latest/json-schema-core.html#anchor22
http://json-schema.org/latest/json-schema-core.html#anchor22

jsonschema Documentation, Release 2.6.0

class jsonschema.IValidator(schema, types=(), resolver=None, format_checker=None)

Parameters

• schema (dict) – the schema that the validator object will validate with. It is as-
sumed to be valid, and providing an invalid schema can lead to undefined behavior. See
IValidator.check_schema() to validate a schema first.

• types (dict or iterable of 2-tuples) – Override or extend the list of known
types when validating the type property. Should map strings (type names) to class objects
that will be checked via isinstance(). See Validating With Additional Types for details.

• resolver – an instance of RefResolver that will be used to resolve $ref properties
(JSON references). If unprovided, one will be created.

• format_checker – an instance of FormatChecker whose conforms() method
will be called to check and see if instances conform to each format property present in the
schema. If unprovided, no validation will be done for format.

DEFAULT_TYPES
The default mapping of JSON types to Python types used when validating type properties in JSON
schemas.

META_SCHEMA
An object representing the validator’s meta schema (the schema that describes valid schemas in the given
version).

VALIDATORS
A mapping of validator names (strs) to functions that validate the validator property with that name. For
more information see Creating or Extending Validator Classes.

schema
The schema that was passed in when initializing the object.

classmethod check_schema(schema)
Validate the given schema against the validator’s META_SCHEMA.

Raises SchemaError if the schema is invalid

is_type(instance, type)
Check if the instance is of the given (JSON Schema) type.

Return type bool

Raises UnknownType if type is not a known type.

is_valid(instance)
Check if the instance is valid under the current schema.

Return type

bool

>>> schema = {"maxItems" : 2}
>>> Draft3Validator(schema).is_valid([2, 3, 4])
False

iter_errors(instance)
Lazily yield each of the validation errors in the given instance.

Return type

an iterable of ValidationErrors

4 Chapter 1. Schema Validation

http://docs.python.org/2.7/library/stdtypes.html#dict
http://json-schema.org/latest/json-schema-validation.html#rfc.section.4.1
http://docs.python.org/2.7/library/functions.html#isinstance
http://json-schema.org/latest/json-schema-core.html#anchor25
http://json-schema.org/latest/json-schema-validation.html#rfc.section.7
http://json-schema.org/latest/json-schema-validation.html#rfc.section.7
http://json-schema.org/latest/json-schema-validation.html#rfc.section.4.1
http://docs.python.org/2.7/library/functions.html#str
http://docs.python.org/2.7/library/functions.html#bool

jsonschema Documentation, Release 2.6.0

>>> schema = {
... "type" : "array",
... "items" : {"enum" : [1, 2, 3]},
... "maxItems" : 2,
... }
>>> v = Draft3Validator(schema)
>>> for error in sorted(v.iter_errors([2, 3, 4]), key=str):
... print(error.message)
4 is not one of [1, 2, 3]
[2, 3, 4] is too long

validate(instance)
Check if the instance is valid under the current schema.

Raises ValidationError if the instance is invalid

>>> schema = {"maxItems" : 2}
>>> Draft3Validator(schema).validate([2, 3, 4])
Traceback (most recent call last):

...
ValidationError: [2, 3, 4] is too long

All of the versioned validators that are included with jsonschema adhere to the interface, and implementors of
validator classes that extend or complement the ones included should adhere to it as well. For more information see
Creating or Extending Validator Classes.

1.2.1 Validating With Additional Types

Occasionally it can be useful to provide additional or alternate types when validating the JSON Schema’s type property.
Validators allow this by taking a types argument on construction that specifies additional types, or which can be used
to specify a different set of Python types to map to a given JSON type.

jsonschema tries to strike a balance between performance in the common case and generality. For instance, JSON
Schema defines a number type, which can be validated with a schema such as {"type" : "number"}. By
default, this will accept instances of Python numbers.Number. This includes in particular ints and floats,
along with decimal.Decimal objects, complex numbers etc. For integer and object, however, rather than
checking for numbers.Integral and collections.abc.Mapping, jsonschema simply checks for int
and dict, since the more general instance checks can introduce significant slowdown, especially given how common
validating these types are.

If you do want the generality, or just want to add a few specific additional types as being acceptible for a validator
object, IValidators have a types argument that can be used to provide additional or new types.

class MyInteger(object):
...

Draft3Validator(
schema={"type" : "number"},
types={"number" : (numbers.Number, MyInteger)},

)

The list of default Python types for each JSON type is available on each validator object in the
IValidator.DEFAULT_TYPES attribute. Note that you need to specify all types to match if you override one
of the existing JSON types, so you may want to access the set of default types when specifying your additional type.

1.2. The Validator Interface 5

http://json-schema.org/latest/json-schema-validation.html#rfc.section.4.1
http://docs.python.org/2.7/library/numbers.html#numbers.Number
http://docs.python.org/2.7/library/functions.html#int
http://docs.python.org/2.7/library/functions.html#float
http://docs.python.org/2.7/library/decimal.html#decimal.Decimal
http://docs.python.org/2.7/library/functions.html#complex
http://docs.python.org/2.7/library/numbers.html#numbers.Integral
http://docs.python.org/2.7/library/functions.html#int
http://docs.python.org/2.7/library/stdtypes.html#dict

jsonschema Documentation, Release 2.6.0

1.3 Versioned Validators

jsonschema ships with validator classes for various versions of the JSON Schema specification. For details on
the methods and attributes that each validator class provides see the IValidator interface, which each included
validator class implements.

class jsonschema.Draft3Validator(schema, types=(), resolver=None, format_checker=None)

class jsonschema.Draft4Validator(schema, types=(), resolver=None, format_checker=None)

For example, if you wanted to validate a schema you created against the Draft 4 meta-schema, you could use:

from jsonschema import Draft4Validator

schema = {
"$schema": "http://json-schema.org/schema#",

"type": "object",
"properties": {

"name": {"type": "string"},
"email": {"type": "string"},

},
"required": ["email"]

}
Draft4Validator.check_schema(schema)

1.4 Validating Formats

JSON Schema defines the format property which can be used to check if primitive types (strings, numbers,
booleans) conform to well-defined formats. By default, no validation is enforced, but optionally, validation can be
enabled by hooking in a format-checking object into an IValidator.

>>> validate("localhost", {"format" : "hostname"})
>>> validate(
... "-12", {"format" : "hostname"}, format_checker=FormatChecker(),
...)
Traceback (most recent call last):

...
ValidationError: "-12" is not a "hostname"

class jsonschema.FormatChecker(formats=None)
A format property checker.

JSON Schema does not mandate that the format property actually do any validation. If validation is desired
however, instances of this class can be hooked into validators to enable format validation.

FormatChecker objects always return True when asked about formats that they do not know how to vali-
date.

To check a custom format using a function that takes an instance and returns a bool, use the
FormatChecker.checks() or FormatChecker.cls_checks() decorators.

Parameters formats (iterable) – The known formats to validate. This argument can be used
to limit which formats will be used during validation.

checkers
A mapping of currently known formats to tuple of functions that validate them and errors that should be

6 Chapter 1. Schema Validation

http://json-schema.org/latest/json-schema-validation.html#rfc.section.7

jsonschema Documentation, Release 2.6.0

caught. New checkers can be added and removed either per-instance or globally for all checkers using the
FormatChecker.checks() or FormatChecker.cls_checks() decorators respectively.

classmethod cls_checks(format, raises=())
Register a decorated function as globally validating a new format.

Any instance created after this function is called will pick up the supplied checker.

Parameters

• format (str) – the format that the decorated function will check

• raises (Exception) – the exception(s) raised by the decorated function when
an invalid instance is found. The exception object will be accessible as the
ValidationError.cause attribute of the resulting validation error.

check(instance, format)
Check whether the instance conforms to the given format.

Parameters

• instance (any primitive type, i.e. str, number, bool) – The in-
stance to check

• format (str) – The format that instance should conform to

Raises FormatError if instance does not conform to format

checks(format, raises=())
Register a decorated function as validating a new format.

Parameters

• format (str) – The format that the decorated function will check.

• raises (Exception) – The exception(s) raised by the decorated function when an
invalid instance is found.

The exception object will be accessible as the ValidationError.cause attribute of
the resulting validation error.

conforms(instance, format)
Check whether the instance conforms to the given format.

Parameters

• instance (any primitive type, i.e. str, number, bool) – The in-
stance to check

• format (str) – The format that instance should conform to

Returns Whether it conformed

Return type bool

There are a number of default checkers that FormatCheckers know how to validate. Their names can be viewed
by inspecting the FormatChecker.checkers attribute. Certain checkers will only be available if an appropriate
package is available for use. The available checkers, along with their requirement (if any,) are listed below.

1.4. Validating Formats 7

http://docs.python.org/2.7/library/functions.html#str
http://docs.python.org/2.7/library/functions.html#str
http://docs.python.org/2.7/library/functions.html#str
http://docs.python.org/2.7/library/functions.html#str
http://docs.python.org/2.7/library/functions.html#bool

jsonschema Documentation, Release 2.6.0

Checker Notes
hostname
ipv4
ipv6 OS must have socket.inet_pton() function
email
uri requires rfc3987
date-time requires strict-rfc3339 2

date
time
regex
color requires webcolors

2For information on creating JSON schemas to validate your data, there is a good introduction to JSON Schema fundamentals underway at
Understanding JSON Schema

8 Chapter 1. Schema Validation

http://docs.python.org/2.7/library/socket.html#socket.inet_pton
http://pypi.python.org/pypi/rfc3987/
http://pypi.python.org/pypi/strict-rfc3339/
http://pypi.python.org/pypi/webcolors/
http://spacetelescope.github.io/understanding-json-schema/

CHAPTER 2

Handling Validation Errors

When an invalid instance is encountered, a ValidationError will be raised or returned, depending on which
method or function is used.

exception jsonschema.exceptions.ValidationError(message, validator=<unset>, path=(),
cause=None, context=(), valida-
tor_value=<unset>, instance=<unset>,
schema=<unset>, schema_path=(),
parent=None)

The instance didn’t properly validate under the provided schema.

The information carried by an error roughly breaks down into:

What Happened Why Did It Happen What Was Being Validated
message context

cause
instance
path
schema
schema_path
validator
validator_value

message
A human readable message explaining the error.

validator
The name of the failed validator.

validator_value
The value for the failed validator in the schema.

schema
The full schema that this error came from. This is potentially a subschema from within the schema that
was passed in originally, or even an entirely different schema if a $ref was followed.

relative_schema_path
A collections.deque containing the path to the failed validator within the schema.

absolute_schema_path
A collections.deque containing the path to the failed validator within the schema, but always rel-
ative to the original schema as opposed to any subschema (i.e. the one originally passed into a validator
class, not schema).

schema_path
Same as relative_schema_path.

9

http://json-schema.org/latest/json-schema-validation.html#anchor12
http://json-schema.org/latest/json-schema-core.html#anchor25
http://docs.python.org/2.7/library/collections.html#collections.deque
http://docs.python.org/2.7/library/collections.html#collections.deque

jsonschema Documentation, Release 2.6.0

relative_path
A collections.deque containing the path to the offending element within the instance. The deque
can be empty if the error happened at the root of the instance.

absolute_path
A collections.deque containing the path to the offending element within the instance. The absolute
path is always relative to the original instance that was validated (i.e. the one passed into a validation
method, not instance). The deque can be empty if the error happened at the root of the instance.

path
Same as relative_path.

instance
The instance that was being validated. This will differ from the instance originally passed into
validate() if the validator object was in the process of validating a (possibly nested) element within
the top-level instance. The path within the top-level instance (i.e. ValidationError.path) could be
used to find this object, but it is provided for convenience.

context
If the error was caused by errors in subschemas, the list of errors from the subschemas will be available on
this property. The schema_path and path of these errors will be relative to the parent error.

cause
If the error was caused by a non-validation error, the exception object will be here. Currently this is only
used for the exception raised by a failed format checker in FormatChecker.check().

parent
A validation error which this error is the context of. None if there wasn’t one.

In case an invalid schema itself is encountered, a SchemaError is raised.

exception jsonschema.exceptions.SchemaError(message, validator=<unset>, path=(),
cause=None, context=(), valida-
tor_value=<unset>, instance=<unset>,
schema=<unset>, schema_path=(), par-
ent=None)

The provided schema is malformed.

The same attributes are present as for ValidationErrors.

These attributes can be clarified with a short example:

schema = {
"items": {

"anyOf": [
{"type": "string", "maxLength": 2},
{"type": "integer", "minimum": 5}

]
}

}
instance = [{}, 3, "foo"]
v = Draft4Validator(schema)
errors = sorted(v.iter_errors(instance), key=lambda e: e.path)

The error messages in this situation are not very helpful on their own.

for error in errors:
print(error.message)

outputs:

10 Chapter 2. Handling Validation Errors

http://docs.python.org/2.7/library/collections.html#collections.deque
http://docs.python.org/2.7/library/collections.html#collections.deque

jsonschema Documentation, Release 2.6.0

{} is not valid under any of the given schemas
3 is not valid under any of the given schemas
'foo' is not valid under any of the given schemas

If we look at path on each of the errors, we can find out which elements in the instance correspond to each of the
errors. In this example, path will have only one element, which will be the index in our list.

for error in errors:
print(list(error.path))

[0]
[1]
[2]

Since our schema contained nested subschemas, it can be helpful to look at the specific part of the instance and
subschema that caused each of the errors. This can be seen with the instance and schema attributes.

With validators like anyOf, the context attribute can be used to see the sub-errors which caused the failure. Since
these errors actually came from two separate subschemas, it can be helpful to look at the schema_path attribute as
well to see where exactly in the schema each of these errors come from. In the case of sub-errors from the context
attribute, this path will be relative to the schema_path of the parent error.

for error in errors:
for suberror in sorted(error.context, key=lambda e: e.schema_path):

print(list(suberror.schema_path), suberror.message, sep=", ")

[0, 'type'], {} is not of type 'string'
[1, 'type'], {} is not of type 'integer'
[0, 'type'], 3 is not of type 'string'
[1, 'minimum'], 3 is less than the minimum of 5
[0, 'maxLength'], 'foo' is too long
[1, 'type'], 'foo' is not of type 'integer'

The string representation of an error combines some of these attributes for easier debugging.

print(errors[1])

3 is not valid under any of the given schemas

Failed validating 'anyOf' in schema['items']:
{'anyOf': [{'maxLength': 2, 'type': 'string'},

{'minimum': 5, 'type': 'integer'}]}

On instance[1]:
3

2.1 ErrorTrees

If you want to programmatically be able to query which properties or validators failed when validating a given instance,
you probably will want to do so using ErrorTree objects.

class jsonschema.validators.ErrorTree(errors=())
ErrorTrees make it easier to check which validations failed.

errors
The mapping of validator names to the error objects (usually ValidationErrors) at this level of the
tree.

2.1. ErrorTrees 11

http://json-schema.org/latest/json-schema-validation.html#rfc.section.5.23

jsonschema Documentation, Release 2.6.0

__contains__(index)
Check whether instance[index] has any errors.

__getitem__(index)
Retrieve the child tree one level down at the given index.

If the index is not in the instance that this tree corresponds to and is not known by this tree, whatever
error would be raised by instance.__getitem__ will be propagated (usually this is some subclass
of LookupError.

__iter__()
Iterate (non-recursively) over the indices in the instance with errors.

__len__()
Same as total_errors.

total_errors
The total number of errors in the entire tree, including children.

Consider the following example:

schema = {
"type" : "array",
"items" : {"type" : "number", "enum" : [1, 2, 3]},
"minItems" : 3,

}
instance = ["spam", 2]

For clarity’s sake, the given instance has three errors under this schema:

v = Draft3Validator(schema)
for error in sorted(v.iter_errors(["spam", 2]), key=str):

print(error.message)

'spam' is not of type 'number'
'spam' is not one of [1, 2, 3]
['spam', 2] is too short

Let’s construct an ErrorTree so that we can query the errors a bit more easily than by just iterating over the error
objects.

tree = ErrorTree(v.iter_errors(instance))

As you can see, ErrorTree takes an iterable of ValidationErrors when constructing a tree so you can directly
pass it the return value of a validator object’s iter_errors method.

ErrorTrees support a number of useful operations. The first one we might want to perform is to check whether a
given element in our instance failed validation. We do so using the in operator:

>>> 0 in tree
True

>>> 1 in tree
False

The interpretation here is that the 0th index into the instance ("spam") did have an error (in fact it had 2), while the
1th index (2) did not (i.e. it was valid).

If we want to see which errors a child had, we index into the tree and look at the errors attribute.

>>> sorted(tree[0].errors)
['enum', 'type']

12 Chapter 2. Handling Validation Errors

http://docs.python.org/2.7/reference/expressions.html#in

jsonschema Documentation, Release 2.6.0

Here we see that the enum and type validators failed for index 0. In fact errors is a dict, whose values are the
ValidationErrors, so we can get at those directly if we want them.

>>> print(tree[0].errors["type"].message)
'spam' is not of type 'number'

Of course this means that if we want to know if a given named validator failed for a given index, we check for its
presence in errors:

>>> "enum" in tree[0].errors
True

>>> "minimum" in tree[0].errors
False

Finally, if you were paying close enough attention, you’ll notice that we haven’t seen our minItems error appear
anywhere yet. This is because minItems is an error that applies globally to the instance itself. So it appears in the root
node of the tree.

>>> "minItems" in tree.errors
True

That’s all you need to know to use error trees.

To summarize, each tree contains child trees that can be accessed by indexing the tree to get the corresponding child
tree for a given index into the instance. Each tree and child has a errors attribute, a dict, that maps the failed
validator name to the corresponding validation error.

2.2 best_match and relevance

The best_match() function is a simple but useful function for attempting to guess the most relevant error in a
given bunch.

>>> from jsonschema import Draft4Validator
>>> from jsonschema.exceptions import best_match

>>> schema = {
... "type": "array",
... "minItems": 3,
... }
>>> print(best_match(Draft4Validator(schema).iter_errors(11)).message)
11 is not of type 'array'

jsonschema.exceptions.best_match(errors, key=<function relevance>)
Try to find an error that appears to be the best match among given errors.

In general, errors that are higher up in the instance (i.e. for which ValidationError.path is shorter) are
considered better matches, since they indicate “more” is wrong with the instance.

If the resulting match is either oneOf or anyOf, the opposite assumption is made – i.e. the deepest error is
picked, since these validators only need to match once, and any other errors may not be relevant.

Parameters

• errors (iterable) – the errors to select from. Do not provide a mixture of errors
from different validation attempts (i.e. from different instances or schemas), since it won’t
produce sensical output.

2.2. best_match and relevance 13

http://json-schema.org/latest/json-schema-validation.html#rfc.section.5.20
http://json-schema.org/latest/json-schema-validation.html#rfc.section.4.1
http://json-schema.org/latest/json-schema-validation.html#rfc.section.5.11
http://json-schema.org/latest/json-schema-validation.html#rfc.section.5.11
http://json-schema.org/latest/json-schema-validation.html#rfc.section.5.24
http://json-schema.org/latest/json-schema-validation.html#rfc.section.5.23

jsonschema Documentation, Release 2.6.0

• key (callable) – the key to use when sorting errors. See relevance and transitively
by_relevance() for more details (the default is to sort with the defaults of that func-
tion). Changing the default is only useful if you want to change the function that rates errors
but still want the error context decension done by this function.

Returns the best matching error, or None if the iterable was empty

Note: This function is a heuristic. Its return value may change for a given set of inputs from version to version
if better heuristics are added.

jsonschema.exceptions.relevance(validation_error)
A key function that sorts errors based on heuristic relevance.

If you want to sort a bunch of errors entirely, you can use this function to do so. Using this function as a key to
e.g. sorted() or max() will cause more relevant errors to be considered greater than less relevant ones.

Within the different validators that can fail, this function considers anyOf and oneOf to be weak validation
errors, and will sort them lower than other validators at the same level in the instance.

If you want to change the set of weak [or strong] validators you can create a custom version of this function
with by_relevance() and provide a different set of each.

>>> schema = {
... "properties": {
... "name": {"type": "string"},
... "phones": {
... "properties": {
... "home": {"type": "string"}
... },
... },
... },
... }
>>> instance = {"name": 123, "phones": {"home": [123]}}
>>> errors = Draft4Validator(schema).iter_errors(instance)
>>> [
... e.path[-1]
... for e in sorted(errors, key=exceptions.relevance)
...]
['home', 'name']

jsonschema.exceptions.by_relevance(weak=frozenset([’oneOf’, ‘anyOf’]),
strong=frozenset([]))

Create a key function that can be used to sort errors by relevance.

Parameters

• weak (set) – a collection of validator names to consider to be “weak”. If there are two
errors at the same level of the instance and one is in the set of weak validator names, the
other error will take priority. By default, anyOf and oneOf are considered weak validators
and will be superceded by other same-level validation errors.

• strong (set) – a collection of validator names to consider to be “strong”

14 Chapter 2. Handling Validation Errors

http://docs.python.org/2.7/library/functions.html#callable
http://docs.python.org/2.7/library/functions.html#sorted
http://docs.python.org/2.7/library/functions.html#max
http://json-schema.org/latest/json-schema-validation.html#rfc.section.5.23
http://json-schema.org/latest/json-schema-validation.html#rfc.section.5.24
http://docs.python.org/2.7/library/stdtypes.html#set
http://json-schema.org/latest/json-schema-validation.html#rfc.section.5.23
http://json-schema.org/latest/json-schema-validation.html#rfc.section.5.24
http://docs.python.org/2.7/library/stdtypes.html#set

CHAPTER 3

Resolving JSON References

class jsonschema.RefResolver(base_uri, referrer, store=(), cache_remote=True, handlers=(),
urljoin_cache=None, remote_cache=None)

Resolve JSON References.

Parameters

• base_uri (str) – The URI of the referring document

• referrer – The actual referring document

• store (dict) – A mapping from URIs to documents to cache

• cache_remote (bool) – Whether remote refs should be cached after first resolution

• handlers (dict) – A mapping from URI schemes to functions that should be used to
retrieve them

• urljoin_cache (functools.lru_cache) – A cache that will be used for caching
the results of joining the resolution scope to subscopes.

• remote_cache (functools.lru_cache) – A cache that will be used for caching the
results of resolved remote URLs.

classmethod from_schema(schema, *args, **kwargs)
Construct a resolver from a JSON schema object.

Parameters schema – the referring schema

Returns RefResolver

resolve_fragment(document, fragment)
Resolve a fragment within the referenced document.

Parameters

• document – The referrant document

• fragment (str) – a URI fragment to resolve within it

resolve_remote(uri)
Resolve a remote uri.

If called directly, does not check the store first, but after retrieving the document at the specified URI it
will be saved in the store if cache_remote is True.

Note: If the requests library is present, jsonschema will use it to request the remote uri, so that the
correct encoding is detected and used.

15

http://docs.python.org/2.7/library/functions.html#str
http://docs.python.org/2.7/library/stdtypes.html#dict
http://docs.python.org/2.7/library/functions.html#bool
http://docs.python.org/2.7/library/stdtypes.html#dict
http://docs.python.org/2.7/library/functions.html#str
http://pypi.python.org/pypi/requests/

jsonschema Documentation, Release 2.6.0

If it isn’t, or if the scheme of the uri is not http or https, UTF-8 is assumed.

Parameters uri (str) – The URI to resolve

Returns The retrieved document

resolving(*args, **kwds)
Context manager which resolves a JSON ref and enters the resolution scope of this ref.

Parameters ref (str) – The reference to resolve

exception jsonschema.RefResolutionError
A JSON reference failed to resolve.

16 Chapter 3. Resolving JSON References

http://docs.python.org/2.7/library/functions.html#str
http://docs.python.org/2.7/library/functions.html#str

CHAPTER 4

Creating or Extending Validator Classes

jsonschema.validators.create(meta_schema, validators=(), version=None, default_types=None)
Create a new validator class.

Parameters

• meta_schema (dict) – the meta schema for the new validator class

• validators (dict) – a mapping from names to callables, where each callable will vali-
date the schema property with the given name.

Each callable should take 4 arguments:

1. a validator instance,

2. the value of the property being validated within the instance

3. the instance

4. the schema

• version (str) – an identifier for the version that this validator class will validate. If
provided, the returned validator class will have its __name__ set to include the version,
and also will have validates() automatically called for the given version.

• default_types (dict) – a default mapping to use for instances of the validator class
when mapping between JSON types to Python types. The default for this argument is prob-
ably fine. Instances can still have their types customized on a per-instance basis.

Returns a new jsonschema.IValidator class

jsonschema.validators.extend(validator, validators, version=None)
Create a new validator class by extending an existing one.

Parameters

• validator (jsonschema.IValidator) – an existing validator class

• validators (dict) – a mapping of new validator callables to extend with, whose struc-
ture is as in create().

Note: Any validator callables with the same name as an existing one will (silently) replace
the old validator callable entirely, effectively overriding any validation done in the “parent”
validator class.

17

http://docs.python.org/2.7/library/stdtypes.html#dict
http://docs.python.org/2.7/library/stdtypes.html#dict
http://docs.python.org/2.7/library/functions.html#str
http://docs.python.org/2.7/library/stdtypes.html#dict
http://docs.python.org/2.7/library/stdtypes.html#dict

jsonschema Documentation, Release 2.6.0

If you wish to instead extend the behavior of a parent’s validator callable, del-
egate and call it directly in the new validator function by retrieving it using
OldValidator.VALIDATORS["validator_name"].

• version (str) – a version for the new validator class

Returns a new jsonschema.IValidator class

Note: Meta Schemas

The new validator class will have its parent’s meta schema.

If you wish to change or extend the meta schema in the new validator class, modify META_SCHEMA directly on
the returned class. Note that no implicit copying is done, so a copy should likely be made before modifying it,
in order to not affect the old validator.

jsonschema.validators.validator_for(schema, default=<unset>)
Retrieve the validator class appropriate for validating the given schema.

Uses the $schema property that should be present in the given schema to look up the appropriate validator class.

Parameters

• schema – the schema to look at

• default – the default to return if the appropriate validator class cannot be determined. If
unprovided, the default is to return Draft4Validator

jsonschema.validators.validates(version)
Register the decorated validator for a version of the specification.

Registered validators and their meta schemas will be considered when parsing $schema properties’ URIs.

Parameters version (str) – An identifier to use as the version’s name

Returns a class decorator to decorate the validator with the version

Return type callable

4.1 Creating Validation Errors

Any validating function that validates against a subschema should call ValidatorMixin.descend(), rather than
ValidatorMixin.iter_errors(). If it recurses into the instance, or schema, it should pass one or both of the
path or schema_path arguments to ValidatorMixin.descend() in order to properly maintain where in the
instance or schema respectively the error occurred.

18 Chapter 4. Creating or Extending Validator Classes

http://docs.python.org/2.7/library/functions.html#str
http://json-schema.org/latest/json-schema-core.html#anchor22
http://docs.python.org/2.7/library/functions.html#str
http://docs.python.org/2.7/library/functions.html#callable

CHAPTER 5

Frequently Asked Questions

5.1 Why doesn’t my schema that has a default property actually set
the default on my instance?

The basic answer is that the specification does not require that default actually do anything.

For an inkling as to why it doesn’t actually do anything, consider that none of the other validators modify the instance
either. More importantly, having default modify the instance can produce quite peculiar things. It’s perfectly valid
(and perhaps even useful) to have a default that is not valid under the schema it lives in! So an instance modified by
the default would pass validation the first time, but fail the second!

Still, filling in defaults is a thing that is useful. jsonschema allows you to define your own validator classes and
callables, so you can easily create a IValidator that does do default setting. Here’s some code to get you started.
(In this code, we add the default properties to each object before the properties are validated, so the default values
themselves will need to be valid under the schema.)

from jsonschema import Draft4Validator, validators

def extend_with_default(validator_class):
validate_properties = validator_class.VALIDATORS["properties"]

def set_defaults(validator, properties, instance, schema):
for property, subschema in properties.iteritems():

if "default" in subschema:
instance.setdefault(property, subschema["default"])

for error in validate_properties(
validator, properties, instance, schema,

):
yield error

return validators.extend(
validator_class, {"properties" : set_defaults},

)

DefaultValidatingDraft4Validator = extend_with_default(Draft4Validator)

Example usage:
obj = {}

19

http://json-schema.org/latest/json-schema-validation.html#rfc.section.6.2
http://json-schema.org/latest/json-schema-validation.html#rfc.section.6.2

jsonschema Documentation, Release 2.6.0

schema = {'properties': {'foo': {'default': 'bar'}}}
Note jsonschem.validate(obj, schema, cls=DefaultValidatingDraft4Validator)
will not work because the metaschema contains `default` directives.
DefaultValidatingDraft4Validator(schema).validate(obj)
assert obj == {'foo': 'bar'}

See the above-linked document for more info on how this works, but basically, it just extends the properties validator
on a Draft4Validator to then go ahead and update all the defaults.

Note: If you’re interested in a more interesting solution to a larger class of these types of transformations, keep an
eye on Seep, which is an experimental data transformation and extraction library written on top of jsonschema.

Hint: The above code can provide default values for an entire object and all of its properties, but only if your schema
provides a default value for the object itself, like so:

schema = {
"type": "object",
"properties": {

"outer-object": {
"type": "object",
"properties" : {

"inner-object": {
"type": "string",
"default": "INNER-DEFAULT"

}
},
"default": {} # <-- MUST PROVIDE DEFAULT OBJECT

}
}

}

obj = {}
DefaultValidatingDraft4Validator(schema).validate(obj)
assert obj == {'outer-object': {'inner-object': 'INNER-DEFAULT'}}

...but if you don’t provide a default value for your object, then it won’t be instantiated at all, much less populated with
default properties.

del schema["properties"]["outer-object"]["default"]
obj2 = {}
DefaultValidatingDraft4Validator(schema).validate(obj2)
assert obj2 == {} # whoops

5.2 How do jsonschema version numbers work?

jsonschema tries to follow the Semantic Versioning specification.

This means broadly that no backwards-incompatible changes should be made in minor releases (and certainly not in
dot releases).

The full picture requires defining what constitutes a backwards-incompatible change.

The following are simple examples of things considered public API, and therefore should not be changed without
bumping a major version number:

20 Chapter 5. Frequently Asked Questions

http://json-schema.org/latest/json-schema-validation.html#rfc.section.5.16
https://github.com/Julian/Seep
http://semver.org/

jsonschema Documentation, Release 2.6.0

• module names and contents, when not marked private by Python convention (a single leading underscore)

• function and object signature (parameter order and name)

The following are not considered public API and may change without notice:

• the exact wording and contents of error messages; typical reasons to do this seem to involve unit tests. API
users are encouraged to use the extensive introspection provided in ValidationErrors instead to make
meaningful assertions about what failed.

• the order in which validation errors are returned or raised

• the compat.py module, which is for internal compatibility use

• anything marked private

With the exception of the last two of those, flippant changes are avoided, but changes can and will be made if there is
improvement to be had. Feel free to open an issue ticket if there is a specific issue or question worth raising.

5.2. How do jsonschema version numbers work? 21

jsonschema Documentation, Release 2.6.0

22 Chapter 5. Frequently Asked Questions

CHAPTER 6

Indices and tables

• genindex

• search

23

jsonschema Documentation, Release 2.6.0

24 Chapter 6. Indices and tables

Python Module Index

j
jsonschema, ??

25

jsonschema Documentation, Release 2.6.0

26 Python Module Index

Index

Symbols
__contains__() (jsonschema.validators.ErrorTree

method), 11
__getitem__() (jsonschema.validators.ErrorTree method),

12
__iter__() (jsonschema.validators.ErrorTree method), 12
__len__() (jsonschema.validators.ErrorTree method), 12

A
absolute_path (jsonschema.exceptions.ValidationError at-

tribute), 10
absolute_schema_path (json-

schema.exceptions.ValidationError attribute),
9

B
best_match() (in module jsonschema.exceptions), 13
by_relevance() (in module jsonschema.exceptions), 14

C
cause (jsonschema.exceptions.ValidationError attribute),

10
check() (jsonschema.FormatChecker method), 7
check_schema() (jsonschema.IValidator class method), 4
checkers (jsonschema.FormatChecker attribute), 6
checks() (jsonschema.FormatChecker method), 7
cls_checks() (jsonschema.FormatChecker class method),

7
conforms() (jsonschema.FormatChecker method), 7
context (jsonschema.exceptions.ValidationError at-

tribute), 10
create() (in module jsonschema.validators), 17

D
DEFAULT_TYPES (jsonschema.IValidator attribute), 4
Draft3Validator (class in jsonschema), 6
Draft4Validator (class in jsonschema), 6

E
errors (jsonschema.exceptions.ErrorTree attribute), 11

ErrorTree (class in jsonschema.validators), 11
extend() (in module jsonschema.validators), 17

F
FormatChecker (class in jsonschema), 6
from_schema() (jsonschema.RefResolver class method),

15

I
instance (jsonschema.exceptions.ValidationError at-

tribute), 10
is_type() (jsonschema.IValidator method), 4
is_valid() (jsonschema.IValidator method), 4
iter_errors() (jsonschema.IValidator method), 4
IValidator (class in jsonschema), 3

J
jsonschema (module), 1

M
message (jsonschema.exceptions.ValidationError at-

tribute), 9
META_SCHEMA (jsonschema.IValidator attribute), 4

P
parent (jsonschema.exceptions.ValidationError attribute),

10
path (jsonschema.exceptions.ValidationError attribute),

10

R
RefResolutionError, 16
RefResolver (class in jsonschema), 15
relative_path (jsonschema.exceptions.ValidationError at-

tribute), 9
relative_schema_path (json-

schema.exceptions.ValidationError attribute),
9

relevance() (in module jsonschema.exceptions), 14

27

jsonschema Documentation, Release 2.6.0

resolve_fragment() (jsonschema.RefResolver method),
15

resolve_remote() (jsonschema.RefResolver method), 15
resolving() (jsonschema.RefResolver method), 16

S
schema (jsonschema.exceptions.ValidationError at-

tribute), 9
schema (jsonschema.IValidator attribute), 4
schema_path (jsonschema.exceptions.ValidationError at-

tribute), 9
SchemaError, 10

T
total_errors (jsonschema.validators.ErrorTree attribute),

12

V
validate() (in module jsonschema), 3
validate() (jsonschema.IValidator method), 5
validates() (in module jsonschema.validators), 18
ValidationError, 9
validator (jsonschema.exceptions.ValidationError at-

tribute), 9
validator_for() (in module jsonschema.validators), 18
validator_value (jsonschema.exceptions.ValidationError

attribute), 9
VALIDATORS (jsonschema.IValidator attribute), 4

28 Index

	Schema Validation
	The Basics
	The Validator Interface
	Versioned Validators
	Validating Formats

	Handling Validation Errors
	ErrorTrees
	best_match and relevance

	Resolving JSON References
	Creating or Extending Validator Classes
	Creating Validation Errors

	Frequently Asked Questions
	Why doesn't my schema that has a default property actually set the default on my instance?
	How do jsonschema version numbers work?

	Indices and tables
	Python Module Index

