

jsonschema

[image: PyPI version] [https://pypi.org/project/jsonschema/] [image: Supported Python versions] [https://pypi.org/project/jsonschema/] [image: Travis build status] [https://travis-ci.com/Julian/jsonschema] [image: AppVeyor build status] [https://ci.appveyor.com/project/Julian/jsonschema] [image: Codecov Code coverage] [https://codecov.io/gh/Julian/jsonschema] [image: ReadTheDocs status] [https://python-jsonschema.readthedocs.io/en/stable/]

jsonschema is an implementation of JSON Schema [https://json-schema.org]
for Python (supporting 2.7+ including Python 3).

>>> from jsonschema import validate

>>> # A sample schema, like what we'd get from json.load()
>>> schema = {
... "type" : "object",
... "properties" : {
... "price" : {"type" : "number"},
... "name" : {"type" : "string"},
... },
... }

>>> # If no exception is raised by validate(), the instance is valid.
>>> validate(instance={"name" : "Eggs", "price" : 34.99}, schema=schema)

>>> validate(
... instance={"name" : "Eggs", "price" : "Invalid"}, schema=schema,
...)
Traceback (most recent call last):
 ...
ValidationError: 'Invalid' is not of type 'number'

It can also be used from console:

$ jsonschema -i sample.json sample.schema

Features

	Full support for
Draft 7 [https://python-jsonschema.readthedocs.io/en/latest/validate/#jsonschema.Draft7Validator],
Draft 6 [https://python-jsonschema.readthedocs.io/en/latest/validate/#jsonschema.Draft6Validator],
Draft 4 [https://python-jsonschema.readthedocs.io/en/latest/validate/#jsonschema.Draft4Validator]
and
Draft 3 [https://python-jsonschema.readthedocs.io/en/latest/validate/#jsonschema.Draft3Validator]

	Lazy validation [https://python-jsonschema.readthedocs.io/en/latest/validate/#jsonschema.IValidator.iter_errors]
that can iteratively report all validation errors.

	Programmatic querying [https://python-jsonschema.readthedocs.io/en/latest/errors/]
of which properties or items failed validation.

Installation

jsonschema is available on PyPI [https://pypi.org/project/jsonschema/]. You can install using pip [https://pip.pypa.io/en/stable/]:

$ pip install jsonschema

Demo

Try jsonschema interactively in this online demo:

[image: Open Live Demo]
 [https://notebooks.ai/demo/gh/Julian/jsonschema]Online demo Notebook will look similar to this:

[image: Open Live Demo]

Release Notes

v3.1 brings support for ECMA 262 dialect regular expressions
throughout schemas, as recommended by the specification. Big
thanks to @Zac-HD for authoring support in a new js-regex [https://pypi.org/project/js-regex/] library.

Running the Test Suite

If you have tox installed (perhaps via pip install tox or your
package manager), running tox in the directory of your source
checkout will run jsonschema’s test suite on all of the versions
of Python jsonschema supports. If you don’t have all of the
versions that jsonschema is tested under, you’ll likely want to run
using tox’s --skip-missing-interpreters option.

Of course you’re also free to just run the tests on a single version with your
favorite test runner. The tests live in the jsonschema.tests package.

Benchmarks

jsonschema’s benchmarks make use of pyperf [https://pyperf.readthedocs.io].

Running them can be done via tox -e perf, or by invoking the pyperf
commands externally (after ensuring that both it and jsonschema itself are
installed):

$ python -m pyperf jsonschema/benchmarks/test_suite.py --hist --output results.json

To compare to a previous run, use:

$ python -m pyperf compare_to --table reference.json results.json

See the pyperf documentation for more details.

Community

There’s a mailing list [https://groups.google.com/forum/#!forum/jsonschema]
for this implementation on Google Groups.

Please join, and feel free to send questions there.

Contributing

I’m Julian Berman.

jsonschema is on GitHub [https://github.com/Julian/jsonschema].

Get in touch, via GitHub or otherwise, if you’ve got something to contribute,
it’d be most welcome!

You can also generally find me on Freenode (nick: tos9) in various
channels, including #python.

If you feel overwhelmingly grateful, you can also woo me with beer money
via Google Pay with the email in my GitHub profile.

And for companies who appreciate jsonschema and its continued support
and growth, jsonschema is also now supportable via TideLift [https://tidelift.com/subscription/pkg/pypi-jsonschema?utm_source=pypi-jsonschema&utm_medium=referral&utm_campaign=readme].

Contents

	Schema Validation
	The Basics

	The Validator Interface

	Type Checking

	Versioned Validators

	Validating Formats

	Handling Validation Errors
	ErrorTrees

	best_match and relevance

	Resolving JSON References

	Creating or Extending Validator Classes
	Creating Validation Errors

	Frequently Asked Questions
	Why doesn’t my schema’s default property set the default on my instance?

	How do jsonschema version numbers work?

Indices and tables

	Index

	Search Page

Schema Validation

The Basics

The simplest way to validate an instance under a given schema is to use the
validate() function.

	
jsonschema.validate(instance, schema, cls=None, *args, **kwargs)

	Validate an instance under the given schema.

>>> validate([2, 3, 4], {"maxItems": 2})
Traceback (most recent call last):
 ...
ValidationError: [2, 3, 4] is too long

validate() will first verify that the provided schema is
itself valid, since not doing so can lead to less obvious error
messages and fail in less obvious or consistent ways.

If you know you have a valid schema already, especially if you
intend to validate multiple instances with the same schema, you
likely would prefer using the IValidator.validate method directly
on a specific validator (e.g. Draft7Validator.validate).

	Parameters

	
	instance – The instance to validate

	schema – The schema to validate with

	cls (IValidator) – The class that will be used to validate the instance.

If the cls argument is not provided, two things will happen
in accordance with the specification. First, if the schema has a
$schema [https://json-schema.org/draft-07/json-schema-core.html#rfc.section.7] property containing a known meta-schema 1
then the proper validator will be used. The specification recommends
that all schemas contain $schema [https://json-schema.org/draft-07/json-schema-core.html#rfc.section.7] properties for this
reason. If no $schema [https://json-schema.org/draft-07/json-schema-core.html#rfc.section.7] property is found, the default
validator class is the latest released draft.

Any other provided positional and keyword arguments will be passed
on when instantiating the cls.

	Raises

	
	jsonschema.exceptions.ValidationError – is invalid

	jsonschema.exceptions.SchemaError – is invalid

Footnotes

	1

	known by a validator registered with
jsonschema.validators.validates

	2

	For information on creating JSON schemas to validate
your data, there is a good introduction to JSON Schema
fundamentals underway at Understanding JSON Schema [https://json-schema.org/understanding-json-schema/]

The Validator Interface

jsonschema defines an (informal) interface that all validator
classes should adhere to.

	
class jsonschema.IValidator(schema, types=(), resolver=None, format_checker=None)

	
	Parameters

	
	schema (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the schema that the validator object
will validate with. It is assumed to be valid, and providing
an invalid schema can lead to undefined behavior. See
IValidator.check_schema to validate a schema first.

	resolver – an instance of RefResolver that will be
used to resolve $ref [https://json-schema.org/draft-07/json-schema-core.html#rfc.section.8.3] properties (JSON references). If
unprovided, one will be created.

	format_checker – an instance of FormatChecker
whose FormatChecker.conforms method will be called to
check and see if instances conform to each format [https://json-schema.org/draft-07/json-schema-validation.html#rfc.references.2]
property present in the schema. If unprovided, no validation
will be done for format [https://json-schema.org/draft-07/json-schema-validation.html#rfc.references.2]. Certain formats require
additional packages to be installed (ipv5, uri, color, date-time).
The required packages can be found at the bottom of this page.

	types –
Deprecated since version 3.0.0: Use TypeChecker.redefine and
jsonschema.validators.extend instead of this argument.

See Validating With Additional Types for details.

If used, this overrides or extends the list of known types when
validating the type [https://json-schema.org/draft-07/json-schema-validation.html#rfc.section.6.1.1] property.

What is provided should map strings (type names) to class objects
that will be checked via isinstance [https://docs.python.org/3/library/functions.html#isinstance].

	
META_SCHEMA

	An object representing the validator’s meta schema (the schema that
describes valid schemas in the given version).

	
VALIDATORS

	A mapping of validator names (str [https://docs.python.org/3/library/stdtypes.html#str]s) to functions
that validate the validator property with that name. For more
information see Creating or Extending Validator Classes.

	
TYPE_CHECKER

	A TypeChecker that will be used when validating type [https://json-schema.org/draft-07/json-schema-validation.html#rfc.section.6.1.1]
properties in JSON schemas.

	
schema

	The schema that was passed in when initializing the object.

	
DEFAULT_TYPES

	
Deprecated since version 3.0.0: Use of this attribute is deprecated in favor of the new type
checkers.

See Validating With Additional Types for details.

For backwards compatibility on existing validator classes, a mapping of
JSON types to Python class objects which define the Python types for
each JSON type.

Any existing code using this attribute should likely transition to
using TypeChecker.is_type.

	
classmethod check_schema(schema)

	Validate the given schema against the validator’s META_SCHEMA.

	Raises

	jsonschema.exceptions.SchemaError if the schema
is invalid

	
is_type(instance, type)

	Check if the instance is of the given (JSON Schema) type.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	jsonschema.exceptions.UnknownType if type
is not a known type.

	
is_valid(instance)

	Check if the instance is valid under the current schema.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

>>> schema = {"maxItems" : 2}
>>> Draft3Validator(schema).is_valid([2, 3, 4])
False

	
iter_errors(instance)

	Lazily yield each of the validation errors in the given instance.

	Return type

	an collections.Iterable [https://docs.python.org/2.7/library/collections.html#collections.Iterable] of
jsonschema.exceptions.ValidationErrors

>>> schema = {
... "type" : "array",
... "items" : {"enum" : [1, 2, 3]},
... "maxItems" : 2,
... }
>>> v = Draft3Validator(schema)
>>> for error in sorted(v.iter_errors([2, 3, 4]), key=str):
... print(error.message)
4 is not one of [1, 2, 3]
[2, 3, 4] is too long

	
validate(instance)

	Check if the instance is valid under the current schema.

	Raises

	jsonschema.exceptions.ValidationError if the
instance is invalid

>>> schema = {"maxItems" : 2}
>>> Draft3Validator(schema).validate([2, 3, 4])
Traceback (most recent call last):
 ...
ValidationError: [2, 3, 4] is too long

All of the versioned validators that are included with
jsonschema adhere to the interface, and implementers of validator classes
that extend or complement the ones included should adhere to it as well. For
more information see Creating or Extending Validator Classes.

Type Checking

To handle JSON Schema’s type [https://json-schema.org/draft-07/json-schema-validation.html#rfc.section.6.1.1] property, a IValidator uses
an associated TypeChecker. The type checker provides an immutable
mapping between names of types and functions that can test if an instance is
of that type. The defaults are suitable for most users - each of the
versioned validators that are included with
jsonschema have a TypeChecker that can correctly handle their respective
versions.

See also

Validating With Additional Types

For an example of providing a custom type check.

	
class jsonschema.TypeChecker(type_checkers=pmap({}))

	A type property checker.

A TypeChecker performs type checking for an IValidator. Type
checks to perform are updated using TypeChecker.redefine or
TypeChecker.redefine_many and removed via TypeChecker.remove.
Each of these return a new TypeChecker object.

	Parameters

	type_checkers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The initial mapping of types to their checking functions.

	
is_type(instance, type)

	Check if the instance is of the appropriate type.

	Parameters

	
	instance (object [https://docs.python.org/3/library/functions.html#object]) – The instance to check

	type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the type that is expected.

	Returns

	Whether it conformed.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	jsonschema.exceptions.UndefinedTypeCheck – if type is unknown to this object.

	
redefine(type, fn)

	Produce a new checker with the given type redefined.

	Parameters

	
	type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the type to check.

	fn (collections.Callable [https://docs.python.org/2.7/library/collections.html#collections.Callable]) – A function taking exactly two parameters - the type
checker calling the function and the instance to check.
The function should return true if instance is of this
type and false otherwise.

	Returns

	A new TypeChecker instance.

	
redefine_many(definitions=())

	Produce a new checker with the given types redefined.

	Parameters

	definitions (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary mapping types to their checking functions.

	Returns

	A new TypeChecker instance.

	
remove(*types)

	Produce a new checker with the given types forgotten.

	Parameters

	types (Iterable [https://docs.python.org/2.7/library/collections.html#collections.Iterable]) – the names of the types to remove.

	Returns

	A new TypeChecker instance

	Raises

	jsonschema.exceptions.UndefinedTypeCheck – if any given type is unknown to this object

	
exception jsonschema.exceptions.UndefinedTypeCheck(type)

	A type checker was asked to check a type it did not have registered.

Raised when trying to remove a type check that is not known to this
TypeChecker, or when calling jsonschema.TypeChecker.is_type
directly.

Validating With Additional Types

Occasionally it can be useful to provide additional or alternate types when
validating the JSON Schema’s type [https://json-schema.org/draft-07/json-schema-validation.html#rfc.section.6.1.1] property.

jsonschema tries to strike a balance between performance in the common
case and generality. For instance, JSON Schema defines a number type, which
can be validated with a schema such as {"type" : "number"}. By default,
this will accept instances of Python numbers.Number [https://docs.python.org/3/library/numbers.html#numbers.Number]. This includes in
particular int [https://docs.python.org/3/library/functions.html#int]s and float [https://docs.python.org/3/library/functions.html#float]s, along with
decimal.Decimal [https://docs.python.org/3/library/decimal.html#decimal.Decimal] objects, complex [https://docs.python.org/3/library/functions.html#complex] numbers etc. For
integer and object, however, rather than checking for
numbers.Integral [https://docs.python.org/3/library/numbers.html#numbers.Integral] and collections.abc.Mapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping],
jsonschema simply checks for int [https://docs.python.org/3/library/functions.html#int] and dict [https://docs.python.org/3/library/stdtypes.html#dict], since the
more general instance checks can introduce significant slowdown, especially
given how common validating these types are.

If you do want the generality, or just want to add a few specific additional
types as being acceptable for a validator object, then you should update an
existing TypeChecker or create a new one. You may then create a new
IValidator via jsonschema.validators.extend.

class MyInteger(object):
 pass

def is_my_int(checker, instance):
 return (
 Draft3Validator.TYPE_CHECKER.is_type(instance, "number") or
 isinstance(instance, MyInteger)
)

type_checker = Draft3Validator.TYPE_CHECKER.redefine("number", is_my_int)

CustomValidator = extend(Draft3Validator, type_checker=type_checker)
validator = CustomValidator(schema={"type" : "number"})

	
exception jsonschema.exceptions.UnknownType(type, instance, schema)

	A validator was asked to validate an instance against an unknown type.

Versioned Validators

jsonschema ships with validator classes for various versions of
the JSON Schema specification. For details on the methods and attributes
that each validator class provides see the IValidator interface,
which each included validator class implements.

	
class jsonschema.Draft7Validator(schema, types=(), resolver=None, format_checker=None)

	

	
class jsonschema.Draft6Validator(schema, types=(), resolver=None, format_checker=None)

	

	
class jsonschema.Draft4Validator(schema, types=(), resolver=None, format_checker=None)

	

	
class jsonschema.Draft3Validator(schema, types=(), resolver=None, format_checker=None)

	

For example, if you wanted to validate a schema you created against the
Draft 6 meta-schema, you could use:

from jsonschema import Draft6Validator

schema = {
 "$schema": "https://json-schema.org/schema#",

 "type": "object",
 "properties": {
 "name": {"type": "string"},
 "email": {"type": "string"},
 },
 "required": ["email"]
}
Draft6Validator.check_schema(schema)

Validating Formats

JSON Schema defines the format [https://json-schema.org/draft-07/json-schema-validation.html#rfc.references.2] property which can be used to check
if primitive types (strings, numbers, booleans) conform to
well-defined formats. By default, no validation is enforced, but optionally,
validation can be enabled by hooking in a format-checking object into an
IValidator.

>>> validate("localhost", {"format" : "hostname"})
>>> validate(
... instance="-12",
... schema={"format" : "hostname"},
... format_checker=draft7_format_checker,
...)
Traceback (most recent call last):
 ...
ValidationError: "-12" is not a "hostname"

	
class jsonschema.FormatChecker(formats=None)

	A format property checker.

JSON Schema does not mandate that the format property actually do any
validation. If validation is desired however, instances of this class can
be hooked into validators to enable format validation.

FormatChecker objects always return True when asked about
formats that they do not know how to validate.

To check a custom format using a function that takes an instance and
returns a bool, use the FormatChecker.checks or
FormatChecker.cls_checks decorators.

	Parameters

	formats (Iterable [https://docs.python.org/2.7/library/collections.html#collections.Iterable]) – The known formats to validate. This argument can be used to
limit which formats will be used during validation.

	
checkers

	A mapping of currently known formats to tuple of functions that
validate them and errors that should be caught. New checkers can be
added and removed either per-instance or globally for all checkers
using the FormatChecker.checks or FormatChecker.cls_checks
decorators respectively.

	
classmethod cls_checks(format, raises=())

	Register a decorated function as globally validating a new format.

Any instance created after this function is called will pick up the
supplied checker.

	Parameters

	
	format (str [https://docs.python.org/3/library/stdtypes.html#str]) – the format that the decorated function will check

	raises (Exception [https://docs.python.org/3/library/exceptions.html#Exception]) – the exception(s) raised
by the decorated function when an invalid instance is
found. The exception object will be accessible as the
jsonschema.exceptions.ValidationError.cause attribute
of the resulting validation error.

	
check(instance, format)

	Check whether the instance conforms to the given format.

	Parameters

	
	instance (any primitive type, i.e. str, number, bool) – The instance to check

	format (str [https://docs.python.org/3/library/stdtypes.html#str]) – The format that instance should conform to

	Raises

	FormatError – if the instance does not conform to format

	
checks(format, raises=())

	Register a decorated function as validating a new format.

	Parameters

	
	format (str [https://docs.python.org/3/library/stdtypes.html#str]) – The format that the decorated function will check.

	raises (Exception [https://docs.python.org/3/library/exceptions.html#Exception]) – The exception(s) raised by the decorated function when an
invalid instance is found.

The exception object will be accessible as the
jsonschema.exceptions.ValidationError.cause attribute of the
resulting validation error.

	
conforms(instance, format)

	Check whether the instance conforms to the given format.

	Parameters

	
	instance (any primitive type, i.e. str, number, bool) – The instance to check

	format (str [https://docs.python.org/3/library/stdtypes.html#str]) – The format that instance should conform to

	Returns

	whether it conformed

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
exception jsonschema.FormatError(message, cause=None)

	Validating a format failed.

There are a number of default checkers that FormatCheckers know how
to validate. Their names can be viewed by inspecting the
FormatChecker.checkers attribute. Certain checkers will only be
available if an appropriate package is available for use. The easiest way to
ensure you have what is needed is to install jsonschema using the
format or format_nongpl setuptools extra – i.e.

$ pip install jsonschema[format]

which will install all of the below dependencies for all formats.

Or if you want to install MIT-license compatible dependencies only:

$ pip install jsonschema[format_nongpl]

The non-GPL extra is intended to not install any direct dependencies
that are GPL (but that of course end-users should do their own verification).
At the moment, it supports all the available checkers except for iri and
iri-reference.

The more specific list of available checkers, along with their requirement
(if any,) are listed below.

Note

If the following packages are not installed when using a checker
that requires it, validation will succeed without throwing an error,
as specified by the JSON Schema specification.

	Checker

	Notes

	color

	requires webcolors [https://pypi.org/pypi/webcolors/]

	date

	

	date-time

	requires strict-rfc3339 [https://pypi.org/pypi/strict-rfc3339/] or rfc3339-validator [https://pypi.org/project/rfc3339-validator/]

	email

	

	hostname

	

	idn-hostname

	requires idna [https://pypi.org/pypi/idna/]

	ipv4

	

	ipv6

	OS must have socket.inet_pton [https://docs.python.org/3/library/socket.html#socket.inet_pton] function

	iri

	requires rfc3987 [https://pypi.org/pypi/rfc3987/]

	iri-reference

	requires rfc3987 [https://pypi.org/pypi/rfc3987/]

	json-pointer

	requires jsonpointer [https://pypi.org/pypi/jsonpointer/]

	regex

	

	relative-json-pointer

	requires jsonpointer [https://pypi.org/pypi/jsonpointer/]

	time

	requires strict-rfc3339 [https://pypi.org/pypi/strict-rfc3339/] or rfc3339-validator [https://pypi.org/project/rfc3339-validator/]

	uri

	requires rfc3987 [https://pypi.org/pypi/rfc3987/] or rfc3986-validator [https://pypi.org/project/rfc3986-validator/]

	uri-reference

	requires rfc3987 [https://pypi.org/pypi/rfc3987/] or rfc3986-validator [https://pypi.org/project/rfc3986-validator/]

Note

Since in most cases “validating” an email address is an attempt
instead to confirm that mail sent to it will deliver to a recipient,
and that that recipient is the correct one the email is intended
for, and since many valid email addresses are in many places
incorrectly rejected, and many invalid email addresses are in many
places incorrectly accepted, the email format validator only
provides a sanity check, not full rfc5322 [https://tools.ietf.org/html/rfc5322#section-3.4.1] validation.

The same applies to the idn-email format.

Handling Validation Errors

When an invalid instance is encountered, a ValidationError will be
raised or returned, depending on which method or function is used.

	
exception jsonschema.exceptions.ValidationError(message, validator=<unset>, path=(), cause=None, context=(), validator_value=<unset>, instance=<unset>, schema=<unset>, schema_path=(), parent=None)

	An instance was invalid under a provided schema.

The information carried by an error roughly breaks down into:

	What Happened

	Why Did It Happen

	What Was Being Validated

	message

	context

cause

	instance

path

schema

schema_path

validator

validator_value

	
message

	A human readable message explaining the error.

	
validator

	The name of the failed validator [https://json-schema.org/draft-04/json-schema-validation.html#rfc.section.5].

	
validator_value

	The value for the failed validator in the schema.

	
schema

	The full schema that this error came from. This is potentially a
subschema from within the schema that was passed in originally,
or even an entirely different schema if a $ref [https://json-schema.org/draft-07/json-schema-core.html#rfc.section.8.3] was
followed.

	
relative_schema_path

	A collections.deque [https://docs.python.org/3/library/collections.html#collections.deque] containing the path to the failed
validator within the schema.

	
absolute_schema_path

	A collections.deque [https://docs.python.org/3/library/collections.html#collections.deque] containing the path to the failed
validator within the schema, but always relative to the
original schema as opposed to any subschema (i.e. the one
originally passed into a validator class, not schema).

	
schema_path

	Same as relative_schema_path.

	
relative_path

	A collections.deque [https://docs.python.org/3/library/collections.html#collections.deque] containing the path to the
offending element within the instance. The deque can be empty if
the error happened at the root of the instance.

	
absolute_path

	A collections.deque [https://docs.python.org/3/library/collections.html#collections.deque] containing the path to the
offending element within the instance. The absolute path
is always relative to the original instance that was
validated (i.e. the one passed into a validation method, not
instance). The deque can be empty if the error happened
at the root of the instance.

	
path

	Same as relative_path.

	
instance

	The instance that was being validated. This will differ from
the instance originally passed into validate if the
validator object was in the process of validating a (possibly
nested) element within the top-level instance. The path within
the top-level instance (i.e. ValidationError.path) could
be used to find this object, but it is provided for convenience.

	
context

	If the error was caused by errors in subschemas, the list of errors
from the subschemas will be available on this property. The
schema_path and path of these errors will be relative
to the parent error.

	
cause

	If the error was caused by a non-validation error, the
exception object will be here. Currently this is only used
for the exception raised by a failed format checker in
jsonschema.FormatChecker.check.

	
parent

	A validation error which this error is the context of.
None if there wasn’t one.

In case an invalid schema itself is encountered, a SchemaError is
raised.

	
exception jsonschema.exceptions.SchemaError(message, validator=<unset>, path=(), cause=None, context=(), validator_value=<unset>, instance=<unset>, schema=<unset>, schema_path=(), parent=None)

	A schema was invalid under its corresponding metaschema.

The same attributes are present as for ValidationErrors.

These attributes can be clarified with a short example:

schema = {
 "items": {
 "anyOf": [
 {"type": "string", "maxLength": 2},
 {"type": "integer", "minimum": 5}
]
 }
}
instance = [{}, 3, "foo"]
v = Draft7Validator(schema)
errors = sorted(v.iter_errors(instance), key=lambda e: e.path)

The error messages in this situation are not very helpful on their own.

for error in errors:
 print(error.message)

outputs:

{} is not valid under any of the given schemas
3 is not valid under any of the given schemas
'foo' is not valid under any of the given schemas

If we look at ValidationError.path on each of the errors, we can find
out which elements in the instance correspond to each of the errors. In
this example, ValidationError.path will have only one element, which
will be the index in our list.

for error in errors:
 print(list(error.path))

[0]
[1]
[2]

Since our schema contained nested subschemas, it can be helpful to look at
the specific part of the instance and subschema that caused each of the errors.
This can be seen with the ValidationError.instance and
ValidationError.schema attributes.

With validators like anyOf [https://json-schema.org/draft-07/json-schema-validation.html#rfc.section.6.7.2], the ValidationError.context
attribute can be used to see the sub-errors which caused the failure. Since
these errors actually came from two separate subschemas, it can be helpful to
look at the ValidationError.schema_path attribute as well to see where
exactly in the schema each of these errors come from. In the case of sub-errors
from the ValidationError.context attribute, this path will be relative
to the ValidationError.schema_path of the parent error.

for error in errors:
 for suberror in sorted(error.context, key=lambda e: e.schema_path):
 print(list(suberror.schema_path), suberror.message, sep=", ")

[0, 'type'], {} is not of type 'string'
[1, 'type'], {} is not of type 'integer'
[0, 'type'], 3 is not of type 'string'
[1, 'minimum'], 3 is less than the minimum of 5
[0, 'maxLength'], 'foo' is too long
[1, 'type'], 'foo' is not of type 'integer'

The string representation of an error combines some of these attributes for
easier debugging.

print(errors[1])

3 is not valid under any of the given schemas

Failed validating 'anyOf' in schema['items']:
 {'anyOf': [{'maxLength': 2, 'type': 'string'},
 {'minimum': 5, 'type': 'integer'}]}

On instance[1]:
 3

ErrorTrees

If you want to programmatically be able to query which properties or validators
failed when validating a given instance, you probably will want to do so using
jsonschema.exceptions.ErrorTree objects.

	
class jsonschema.exceptions.ErrorTree(errors=())

	ErrorTrees make it easier to check which validations failed.

	
errors

	The mapping of validator names to the error objects (usually
jsonschema.exceptions.ValidationErrors) at this level
of the tree.

	
__contains__(index)

	Check whether instance[index] has any errors.

	
__getitem__(index)

	Retrieve the child tree one level down at the given index.

If the index is not in the instance that this tree corresponds to and
is not known by this tree, whatever error would be raised by
instance.__getitem__ will be propagated (usually this is some
subclass of exceptions.LookupError [https://docs.python.org/2.7/library/exceptions.html#exceptions.LookupError].

	
__init__(errors=())

	Initialize self. See help(type(self)) for accurate signature.

	
__iter__()

	Iterate (non-recursively) over the indices in the instance with errors.

	
__len__()

	Return the total_errors.

	
__repr__()

	Return repr(self).

	
__setitem__(index, value)

	Add an error to the tree at the given index.

	
property total_errors

	The total number of errors in the entire tree, including children.

Consider the following example:

schema = {
 "type" : "array",
 "items" : {"type" : "number", "enum" : [1, 2, 3]},
 "minItems" : 3,
}
instance = ["spam", 2]

For clarity’s sake, the given instance has three errors under this schema:

v = Draft3Validator(schema)
for error in sorted(v.iter_errors(["spam", 2]), key=str):
 print(error.message)

'spam' is not of type 'number'
'spam' is not one of [1, 2, 3]
['spam', 2] is too short

Let’s construct an jsonschema.exceptions.ErrorTree so that we
can query the errors a bit more easily than by just iterating over the
error objects.

tree = ErrorTree(v.iter_errors(instance))

As you can see, jsonschema.exceptions.ErrorTree takes an
iterable of ValidationErrors when constructing a tree so
you can directly pass it the return value of a validator object’s
jsonschema.IValidator.iter_errors method.

ErrorTrees support a number of useful operations. The first one we
might want to perform is to check whether a given element in our instance
failed validation. We do so using the in [https://docs.python.org/3/reference/expressions.html#in] operator:

>>> 0 in tree
True

>>> 1 in tree
False

The interpretation here is that the 0th index into the instance ("spam")
did have an error (in fact it had 2), while the 1th index (2) did not (i.e.
it was valid).

If we want to see which errors a child had, we index into the tree and look at
the ErrorTree.errors attribute.

>>> sorted(tree[0].errors)
['enum', 'type']

Here we see that the enum [https://json-schema.org/draft-07/json-schema-validation.html#rfc.section.6.1.2] and type [https://json-schema.org/draft-07/json-schema-validation.html#rfc.section.6.1.1] validators failed
for index 0. In fact ErrorTree.errors is a dict, whose values are
the ValidationErrors, so we can get at those directly if we want
them.

>>> print(tree[0].errors["type"].message)
'spam' is not of type 'number'

Of course this means that if we want to know if a given named
validator failed for a given index, we check for its presence in
ErrorTree.errors:

>>> "enum" in tree[0].errors
True

>>> "minimum" in tree[0].errors
False

Finally, if you were paying close enough attention, you’ll notice that we
haven’t seen our minItems [https://json-schema.org/draft-07/json-schema-validation.html#rfc.section.6.4.4] error appear anywhere yet. This is
because minItems [https://json-schema.org/draft-07/json-schema-validation.html#rfc.section.6.4.4] is an error that applies globally to the instance
itself. So it appears in the root node of the tree.

>>> "minItems" in tree.errors
True

That’s all you need to know to use error trees.

To summarize, each tree contains child trees that can be accessed by
indexing the tree to get the corresponding child tree for a given index
into the instance. Each tree and child has a ErrorTree.errors
attribute, a dict, that maps the failed validator name to the
corresponding validation error.

best_match and relevance

The best_match function is a simple but useful function for attempting
to guess the most relevant error in a given bunch.

>>> from jsonschema import Draft7Validator
>>> from jsonschema.exceptions import best_match

>>> schema = {
... "type": "array",
... "minItems": 3,
... }
>>> print(best_match(Draft7Validator(schema).iter_errors(11)).message)
11 is not of type 'array'

	
jsonschema.exceptions.best_match(errors, key=<function by_relevance.<locals>.relevance>)

	Try to find an error that appears to be the best match among given errors.

In general, errors that are higher up in the instance (i.e. for which
ValidationError.path is shorter) are considered better matches,
since they indicate “more” is wrong with the instance.

If the resulting match is either oneOf [https://json-schema.org/draft-07/json-schema-validation.html#rfc.section.6.7.3] or anyOf [https://json-schema.org/draft-07/json-schema-validation.html#rfc.section.6.7.2],
the opposite assumption is made – i.e. the deepest error is picked,
since these validators only need to match once, and any other errors may
not be relevant.

	Parameters

	
	errors (collections.Iterable [https://docs.python.org/2.7/library/collections.html#collections.Iterable]) – the errors to select from. Do not provide a mixture of
errors from different validation attempts (i.e. from
different instances or schemas), since it won’t produce
sensical output.

	key (collections.Callable [https://docs.python.org/2.7/library/collections.html#collections.Callable]) – the key to use when sorting errors. See relevance and
transitively by_relevance for more details (the default is
to sort with the defaults of that function). Changing the
default is only useful if you want to change the function
that rates errors but still want the error context descent
done by this function.

	Returns

	the best matching error, or None if the iterable was empty

Note

This function is a heuristic. Its return value may change for a given
set of inputs from version to version if better heuristics are added.

	
jsonschema.exceptions.relevance(validation_error)

	A key function that sorts errors based on heuristic relevance.

If you want to sort a bunch of errors entirely, you can use
this function to do so. Using this function as a key to e.g.
sorted [https://docs.python.org/3/library/functions.html#sorted] or max [https://docs.python.org/3/library/functions.html#max] will cause more relevant errors to be
considered greater than less relevant ones.

Within the different validators that can fail, this function
considers anyOf [https://json-schema.org/draft-07/json-schema-validation.html#rfc.section.6.7.2] and oneOf [https://json-schema.org/draft-07/json-schema-validation.html#rfc.section.6.7.3] to be weak
validation errors, and will sort them lower than other validators at
the same level in the instance.

If you want to change the set of weak [or strong] validators you can create
a custom version of this function with by_relevance and provide a
different set of each.

>>> schema = {
... "properties": {
... "name": {"type": "string"},
... "phones": {
... "properties": {
... "home": {"type": "string"}
... },
... },
... },
... }
>>> instance = {"name": 123, "phones": {"home": [123]}}
>>> errors = Draft7Validator(schema).iter_errors(instance)
>>> [
... e.path[-1]
... for e in sorted(errors, key=exceptions.relevance)
...]
['home', 'name']

	
jsonschema.exceptions.by_relevance(weak=frozenset({'anyOf', 'oneOf'}), strong=frozenset({}))

	Create a key function that can be used to sort errors by relevance.

	Parameters

	
	weak (set [https://docs.python.org/3/library/stdtypes.html#set]) – a collection of validator names to consider to be “weak”.
If there are two errors at the same level of the instance
and one is in the set of weak validator names, the other
error will take priority. By default, anyOf [https://json-schema.org/draft-07/json-schema-validation.html#rfc.section.6.7.2] and
oneOf [https://json-schema.org/draft-07/json-schema-validation.html#rfc.section.6.7.3] are considered weak validators and will
be superseded by other same-level validation errors.

	strong (set [https://docs.python.org/3/library/stdtypes.html#set]) – a collection of validator names to consider to be “strong”

Resolving JSON References

	
class jsonschema.RefResolver(base_uri, referrer, store=(), cache_remote=True, handlers=(), urljoin_cache=None, remote_cache=None)

	Resolve JSON References.

	Parameters

	
	base_uri (str [https://docs.python.org/3/library/stdtypes.html#str]) – The URI of the referring document

	referrer – The actual referring document

	store (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A mapping from URIs to documents to cache

	cache_remote (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether remote refs should be cached after first resolution

	handlers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A mapping from URI schemes to functions that should be used
to retrieve them

	urljoin_cache (functools.lru_cache() [https://docs.python.org/3/library/functools.html#functools.lru_cache]) – A cache that will be used for caching the results of joining
the resolution scope to subscopes.

	remote_cache (functools.lru_cache() [https://docs.python.org/3/library/functools.html#functools.lru_cache]) – A cache that will be used for caching the results of
resolved remote URLs.

	
cache_remote

	Whether remote refs should be cached after first resolution

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
property base_uri

	Retrieve the current base URI, not including any fragment.

	
classmethod from_schema(schema, id_of=<function _id_of>, *args, **kwargs)

	Construct a resolver from a JSON schema object.

	Parameters

	schema – the referring schema

	Returns

	RefResolver

	
in_scope(scope)

	Temporarily enter the given scope for the duration of the context.

	
pop_scope()

	Exit the most recent entered scope.

Treats further dereferences as being performed underneath the
original scope.

Don’t call this method more times than push_scope has been
called.

	
push_scope(scope)

	Enter a given sub-scope.

Treats further dereferences as being performed underneath the
given scope.

	
property resolution_scope

	Retrieve the current resolution scope.

	
resolve(ref)

	Resolve the given reference.

	
resolve_fragment(document, fragment)

	Resolve a fragment within the referenced document.

	Parameters

	
	document – The referent document

	fragment (str [https://docs.python.org/3/library/stdtypes.html#str]) – a URI fragment to resolve within it

	
resolve_from_url(url)

	Resolve the given remote URL.

	
resolve_remote(uri)

	Resolve a remote uri.

If called directly, does not check the store first, but after
retrieving the document at the specified URI it will be saved in
the store if cache_remote is True.

Note

If the requests [https://pypi.org/project/requests/] library is present, jsonschema will use it to
request the remote uri, so that the correct encoding is
detected and used.

If it isn’t, or if the scheme of the uri is not http or
https, UTF-8 is assumed.

	Parameters

	uri (str [https://docs.python.org/3/library/stdtypes.html#str]) – The URI to resolve

	Returns

	The retrieved document

	
resolving(ref)

	Resolve the given ref and enter its resolution scope.

Exits the scope on exit of this context manager.

	Parameters

	ref (str [https://docs.python.org/3/library/stdtypes.html#str]) – The reference to resolve

	
exception jsonschema.RefResolutionError(cause)

	A ref could not be resolved.

A JSON reference failed to resolve.

Creating or Extending Validator Classes

	
jsonschema.validators.create(meta_schema, validators=(), version=None, default_types=None, type_checker=None, id_of=<function _id_of>)

	Create a new validator class.

	Parameters

	
	meta_schema (collections.Mapping [https://docs.python.org/2.7/library/collections.html#collections.Mapping]) – the meta schema for the new validator class

	validators (collections.Mapping [https://docs.python.org/2.7/library/collections.html#collections.Mapping]) – a mapping from names to callables, where each callable will
validate the schema property with the given name.

Each callable should take 4 arguments:

	a validator instance,

	the value of the property being validated within the
instance

	the instance

	the schema

	version (str [https://docs.python.org/3/library/stdtypes.html#str]) – an identifier for the version that this validator class will
validate. If provided, the returned validator class will
have its __name__ set to include the version, and also
will have jsonschema.validators.validates automatically
called for the given version.

	type_checker (jsonschema.TypeChecker) – a type checker, used when applying the type [https://json-schema.org/draft-07/json-schema-validation.html#rfc.section.6.1.1] validator.

If unprovided, a jsonschema.TypeChecker will be created
with a set of default types typical of JSON Schema drafts.

	default_types (collections.Mapping [https://docs.python.org/2.7/library/collections.html#collections.Mapping]) –
Deprecated since version 3.0.0: Please use the type_checker argument instead.

If set, it provides mappings of JSON types to Python types
that will be converted to functions and redefined in this
object’s jsonschema.TypeChecker.

	id_of (collections.Callable [https://docs.python.org/2.7/library/collections.html#collections.Callable]) – A function that given a schema, returns its ID.

	Returns

	a new jsonschema.IValidator class

	
jsonschema.validators.extend(validator, validators=(), version=None, type_checker=None)

	Create a new validator class by extending an existing one.

	Parameters

	
	validator (jsonschema.IValidator) – an existing validator class

	validators (collections.Mapping [https://docs.python.org/2.7/library/collections.html#collections.Mapping]) – a mapping of new validator callables to extend with, whose
structure is as in create.

Note

Any validator callables with the same name as an
existing one will (silently) replace the old validator
callable entirely, effectively overriding any validation
done in the “parent” validator class.

If you wish to instead extend the behavior of a parent’s
validator callable, delegate and call it directly in
the new validator function by retrieving it using
OldValidator.VALIDATORS["validator_name"].

	version (str [https://docs.python.org/3/library/stdtypes.html#str]) – a version for the new validator class

	type_checker (jsonschema.TypeChecker) – a type checker, used when applying the type [https://json-schema.org/draft-07/json-schema-validation.html#rfc.section.6.1.1] validator.

If unprovided, the type checker of the extended
jsonschema.IValidator will be carried along.`

	Returns

	a new jsonschema.IValidator class extending the one provided

Note

Meta Schemas

The new validator class will have its parent’s meta schema.

If you wish to change or extend the meta schema in the new
validator class, modify META_SCHEMA directly on the returned
class. Note that no implicit copying is done, so a copy should
likely be made before modifying it, in order to not affect the
old validator.

	
jsonschema.validators.validator_for(schema, default=<class 'jsonschema.validators.create.<locals>.Validator'>)

	Retrieve the validator class appropriate for validating the given schema.

Uses the $schema [https://json-schema.org/draft-07/json-schema-core.html#rfc.section.7] property that should be present in the
given schema to look up the appropriate validator class.

	Parameters

	
	schema (collections.Mapping [https://docs.python.org/2.7/library/collections.html#collections.Mapping] or bool [https://docs.python.org/3/library/functions.html#bool]) – the schema to look at

	default – the default to return if the appropriate validator class
cannot be determined.

If unprovided, the default is to return the latest supported
draft.

	
jsonschema.validators.validates(version)

	Register the decorated validator for a version of the specification.

Registered validators and their meta schemas will be considered when
parsing $schema properties’ URIs.

	Parameters

	version (str [https://docs.python.org/3/library/stdtypes.html#str]) – An identifier to use as the version’s name

	Returns

	a class decorator to decorate the validator with the version

	Return type

	collections.Callable [https://docs.python.org/2.7/library/collections.html#collections.Callable]

Creating Validation Errors

Any validating function that validates against a subschema should call
descend, rather than iter_errors. If it recurses into the
instance, or schema, it should pass one or both of the path or
schema_path arguments to descend in order to properly maintain
where in the instance or schema respectively the error occurred.

Frequently Asked Questions

Why doesn’t my schema’s default property set the default on my instance?

The basic answer is that the specification does not require that
default [https://json-schema.org/draft-07/json-schema-validation.html#rfc.section.10.2] actually do anything.

For an inkling as to why it doesn’t actually do anything, consider
that none of the other validators modify the instance either. More
importantly, having default [https://json-schema.org/draft-07/json-schema-validation.html#rfc.section.10.2] modify the instance can produce
quite peculiar things. It’s perfectly valid (and perhaps even useful)
to have a default that is not valid under the schema it lives in! So an
instance modified by the default would pass validation the first time,
but fail the second!

Still, filling in defaults is a thing that is useful. jsonschema
allows you to define your own validator classes and callables, so you can easily create an jsonschema.IValidator that
does do default setting. Here’s some code to get you started. (In
this code, we add the default properties to each object before the
properties are validated, so the default values themselves will need to
be valid under the schema.)

from jsonschema import Draft7Validator, validators

def extend_with_default(validator_class):
 validate_properties = validator_class.VALIDATORS["properties"]

 def set_defaults(validator, properties, instance, schema):
 for property, subschema in properties.items():
 if "default" in subschema:
 instance.setdefault(property, subschema["default"])

 for error in validate_properties(
 validator, properties, instance, schema,
):
 yield error

 return validators.extend(
 validator_class, {"properties" : set_defaults},
)

DefaultValidatingDraft7Validator = extend_with_default(Draft7Validator)

Example usage:
obj = {}
schema = {'properties': {'foo': {'default': 'bar'}}}
Note jsonschem.validate(obj, schema, cls=DefaultValidatingDraft7Validator)
will not work because the metaschema contains `default` directives.
DefaultValidatingDraft7Validator(schema).validate(obj)
assert obj == {'foo': 'bar'}

See the above-linked document for more info on how this works, but
basically, it just extends the properties [https://json-schema.org/draft-07/json-schema-validation.html#rfc.section.6.5.4] validator on
a jsonschema.Draft7Validator to then go ahead and update all the
defaults.

Note

If you’re interested in a more interesting solution to a larger
class of these types of transformations, keep an eye on Seep [https://github.com/Julian/Seep], which is an experimental
data transformation and extraction library written on top of
jsonschema.

Hint

The above code can provide default values for an entire object and
all of its properties, but only if your schema provides a default
value for the object itself, like so:

schema = {
 "type": "object",
 "properties": {
 "outer-object": {
 "type": "object",
 "properties" : {
 "inner-object": {
 "type": "string",
 "default": "INNER-DEFAULT"
 }
 },
 "default": {} # <-- MUST PROVIDE DEFAULT OBJECT
 }
 }
}

obj = {}
DefaultValidatingDraft7Validator(schema).validate(obj)
assert obj == {'outer-object': {'inner-object': 'INNER-DEFAULT'}}

…but if you don’t provide a default value for your object, then
it won’t be instantiated at all, much less populated with default
properties.

del schema["properties"]["outer-object"]["default"]
obj2 = {}
DefaultValidatingDraft7Validator(schema).validate(obj2)
assert obj2 == {} # whoops

How do jsonschema version numbers work?

jsonschema tries to follow the Semantic Versioning [https://semver.org/] specification.

This means broadly that no backwards-incompatible changes should be made
in minor releases (and certainly not in dot releases).

The full picture requires defining what constitutes a
backwards-incompatible change.

The following are simple examples of things considered public API,
and therefore should not be changed without bumping a major version
number:

	module names and contents, when not marked private by Python
convention (a single leading underscore)

	function and object signature (parameter order and name)

The following are not considered public API and may change without
notice:

	the exact wording and contents of error messages; typical
reasons to do this seem to involve unit tests. API users are
encouraged to use the extensive introspection provided in
jsonschema.exceptions.ValidationErrors instead to make meaningful
assertions about what failed.

	the order in which validation errors are returned or raised

	the contents of the jsonschema.tests package

	the contents of the jsonschema.benchmarks package

	the jsonschema.compat module, which is for internal
compatibility use

	anything marked private

With the exception of the last two of those, flippant changes are
avoided, but changes can and will be made if there is improvement to be
had. Feel free to open an issue ticket if there is a specific issue or
question worth raising.

 Python Module Index

 j

 		 	

 		
 j	

 	
 	
 jsonschema	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | I
 | J
 | M
 | P
 | R
 | S
 | T
 | U
 | V

_

 	
 	__contains__() (jsonschema.exceptions.ErrorTree method)

 	__getitem__() (jsonschema.exceptions.ErrorTree method)

 	__init__() (jsonschema.exceptions.ErrorTree method)

 	
 	__iter__() (jsonschema.exceptions.ErrorTree method)

 	__len__() (jsonschema.exceptions.ErrorTree method)

 	__repr__() (jsonschema.exceptions.ErrorTree method)

 	__setitem__() (jsonschema.exceptions.ErrorTree method)

A

 	
 	absolute_path (jsonschema.exceptions.ValidationError attribute)

 	
 	absolute_schema_path (jsonschema.exceptions.ValidationError attribute)

B

 	
 	base_uri() (jsonschema.RefResolver property)

 	
 	best_match() (in module jsonschema.exceptions)

 	by_relevance() (in module jsonschema.exceptions)

C

 	
 	cache_remote (jsonschema.RefResolver attribute)

 	cause (jsonschema.exceptions.ValidationError attribute)

 	check() (jsonschema.FormatChecker method)

 	check_schema() (jsonschema.IValidator class method)

 	checkers (jsonschema.FormatChecker attribute)

 	
 	checks() (jsonschema.FormatChecker method)

 	cls_checks() (jsonschema.FormatChecker class method)

 	conforms() (jsonschema.FormatChecker method)

 	context (jsonschema.exceptions.ValidationError attribute)

 	create() (in module jsonschema.validators)

D

 	
 	DEFAULT_TYPES (jsonschema.IValidator attribute)

 	Draft3Validator (class in jsonschema)

 	
 	Draft4Validator (class in jsonschema)

 	Draft6Validator (class in jsonschema)

 	Draft7Validator (class in jsonschema)

E

 	
 	errors (jsonschema.exceptions.ErrorTree attribute)

 	
 	ErrorTree (class in jsonschema.exceptions)

 	extend() (in module jsonschema.validators)

F

 	
 	FormatChecker (class in jsonschema)

 	
 	FormatError

 	from_schema() (jsonschema.RefResolver class method)

I

 	
 	in_scope() (jsonschema.RefResolver method)

 	instance (jsonschema.exceptions.ValidationError attribute)

 	is_type() (jsonschema.IValidator method)

 	(jsonschema.TypeChecker method)

 	
 	is_valid() (jsonschema.IValidator method)

 	iter_errors() (jsonschema.IValidator method)

 	IValidator (class in jsonschema)

J

 	
 	jsonschema (module)

M

 	
 	message (jsonschema.exceptions.ValidationError attribute)

 	
 	META_SCHEMA (jsonschema.IValidator attribute)

P

 	
 	parent (jsonschema.exceptions.ValidationError attribute)

 	path (jsonschema.exceptions.ValidationError attribute)

 	
 	pop_scope() (jsonschema.RefResolver method)

 	push_scope() (jsonschema.RefResolver method)

R

 	
 	redefine() (jsonschema.TypeChecker method)

 	redefine_many() (jsonschema.TypeChecker method)

 	RefResolutionError

 	RefResolver (class in jsonschema)

 	relative_path (jsonschema.exceptions.ValidationError attribute)

 	relative_schema_path (jsonschema.exceptions.ValidationError attribute)

 	relevance() (in module jsonschema.exceptions)

 	
 	remove() (jsonschema.TypeChecker method)

 	resolution_scope() (jsonschema.RefResolver property)

 	resolve() (jsonschema.RefResolver method)

 	resolve_fragment() (jsonschema.RefResolver method)

 	resolve_from_url() (jsonschema.RefResolver method)

 	resolve_remote() (jsonschema.RefResolver method)

 	resolving() (jsonschema.RefResolver method)

S

 	
 	schema (jsonschema.exceptions.ValidationError attribute)

 	(jsonschema.IValidator attribute)

 	
 	schema_path (jsonschema.exceptions.ValidationError attribute)

 	SchemaError

T

 	
 	total_errors() (jsonschema.exceptions.ErrorTree property)

 	
 	TYPE_CHECKER (jsonschema.IValidator attribute)

 	TypeChecker (class in jsonschema)

U

 	
 	UndefinedTypeCheck

 	
 	UnknownType

V

 	
 	validate() (in module jsonschema)

 	(jsonschema.IValidator method)

 	validates() (in module jsonschema.validators)

 	ValidationError

 	
 	validator (jsonschema.exceptions.ValidationError attribute)

 	validator_for() (in module jsonschema.validators)

 	validator_value (jsonschema.exceptions.ValidationError attribute)

 	VALIDATORS (jsonschema.IValidator attribute)

 _static/plus.png

nav.xhtml

 Table of Contents

 		
 jsonschema

 		
 Schema Validation

 		
 The Basics

 		
 The Validator Interface

 		
 Type Checking

 		
 Validating With Additional Types

 		
 Versioned Validators

 		
 Validating Formats

 		
 Handling Validation Errors

 		
 ErrorTrees

 		
 best_match and relevance

 		
 Resolving JSON References

 		
 Creating or Extending Validator Classes

 		
 Creating Validation Errors

 		
 Frequently Asked Questions

 		
 Why doesn’t my schema’s default property set the default on my instance?

 		
 How do jsonschema version numbers work?

_static/file.png

_static/minus.png

_images/1c152e332e5f809f4c790f90e125871c921ce90d.gif

_images/83bee4450ed80f951c77f19336ecb68fe7b7df09.png
OPENLIVEDEMO

